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The solution of the Stokes problem is used to obtain explicit expressions in
the form of special rapldly convergent series for the projections of the
intensity of the Earth's regularized gravitational fileld at its surface and
outside 1t.

1. We introduce the right-handed orthogonal coordinate system O;xyx ,
placing 1ts origin at the center of the Earth, directing the y-axis along
the vector w of the Earth's angular rotational velocity, and locating its
x-axis at the intersection of the equatorial and Greenwich meridian plenes.

By F, F,, F, we denote the projections on the axes xyz of the inten-
sity of the Earth's regularized gravitational fleld at some point ¢ with
the coordinates x, y, # . The solution of the 8tokes problem for an equi-
poténtial surface specified in the form of a spheroild (Clairaut ellipsoid)
yields the following Expressions [1 to 3] for these projections at the point
0 s8ituated outside the ellipsoid:
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where ¢ and » are the major and minor semliaxes of the Clairaut ellipsoid;
L' 18 the second eccentricity of the confocal ellipsoid passing through the
point ¢ ; D and ( are constants.

The quantity 2 1s found from the condition [1]
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where £ 18 the second eccentricity of the Clairaut ellipsoid. The constant
C can be obtained by comparing the acceleration due to gravity as obtained
from Formulas (1.1) to (1.3) with 1ts measured value ¢, at sea level on the
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equator. PFor determining ( we have Expression
g. = 2nDCa + Pya — u’a (1.4)
where P, is the value of P on the surface of the Clairaut ellipsoid.

2., Let us specify the position of the point (¢ in the coordinate system
0,xys 1in terms of the geocentric coordinates: the distance r form the
Earth's center, the latitude ¢ and longitude X . Next, we introduce the
associated trihedron Ox,),#, of the geocentric coordinate grid, directing
its x,-axis along pr = b 'and ointing the , ~axis northward in the plane
of the meridian. Then, from (1. 17 and (1.2) and from the definition of the
confocal ellipsoid we have

Fo,=0, F, =2nDsingcos¢ (R — CS), F, = —2nD (I + Rcos*q + CU) (2.1)
In these expressions
a%br . U , 2athr , ,
R=m(3 tan l—m—ﬂ), T:m(l— tan-t ')
- athe? (b 4 )" 2.2

r (¢4 v)cos? @ 4 (a¥+ v)3sinig
U= a%  [(b® + v)cos? @ + (a® 4 v)sin? @] (b2 4-v)7*
r (0?2 +-v)2cos? @ - (a® 4 v)Esin? @
where e 18 the firsat eccentricity of the equipotential ellipsoid and v
is the parameter of the confocal ellipsoid (I = [(a® — b2)7 (b + v)] 1.

The right sides of Formulas (2.1) can be expanded in series in powers of ¢,
From the equation of the confocal ellipsoild and from the definition of

its second eccentricity we have
V2 (a®—b?) 2.3)

=
}[r’ — a4+ b2+ Vrt 4 (af — b2 — 2r% (a® — b?) cos 2¢
Hence, 24)
ae 1 [ea\2 1 feanN8t 3 7 .
U=-—up, ""=1+T(T) cos’q:-{——ﬁ(—r—) (Tcos’«p—g-z-sm’&p)—{—...
Now (2.5)

nese(Efir(-Eabre) ol - drdes)

or, substituting in £’ and u from (2.4),

r=pe (L) [~ 5+ (5] (7 "'“”"P)Jf---] (2.6)
T=b (3] |5+ (5 (oo ) + (S5 (F + eosto— gy simg)-+.. ]
Similarly,
v=r [1 — (%)2 — (%)Zinz(p-;-—,i;—("r—e)'sinzzq; +.. ] @.7)
so that
S = Cher (-f—)‘[i + (‘T“)' (% cos’(p—?.) + ] 2.8)

v=cs(5) 14 (%Y (—23—coseq,_1)+ (52) (1= - cost o —-2 ims 220) + .. ]
Substituting (2.6) and (2.8) into (2.1), we have Pormulas
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which are the expansions we were seeking. Prom (2.3) we conclude that series
(2.4) converge absolutely and uniformly. This implles the convergence of
series (2.6),(2.8) and hence of (2.9). The rapid convergence of series (2.9)
is guaranteed by the smallness of ae/r .

Let us compute the consonants D and ¢ . From (1.3) we have
. u? _13( 1 1
=2net 4 1*‘7’6"+7;§e‘+--.) (2.10)
The constant ¢ appears in (2.9) as part of the product nDC . From
(1.1),(1.2) and (1.4) we have
g u? 5 13 8
wpC=4+ 3 (— T esget ) @40
substituting (2.10) and (2.11) into (2.9), multiplying out the series,
and carrying out some obvious regroupings, we arrive at the Expressions
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in which ¢ denotes the ratio of the centr1ru§al acceleration to the acce-
leration due to gravity on the equator, ¢ = v’a/¢, . The quantity ¢ 1s
of the same order of smallness as &° .

Let us specify the values of the coefficients appearing in Formulas (2.12)

We take (*)

8o = 978.049 cm/cen?, u = 7.29212 cex™!, a = 6378250 x

Then e = 0.00669342, ¢ = 0.00346775

#) The values of @, ¢ , ¢ are taken for the parameters of Krasovskii's
ellipsoid (4].
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ge!2(g—e) = —4.577, 1+ & (Te? — 30 q) /14 (g — &%) = 1.008
e? (30g — 21 €%) / 14 (g — %) = 0.005

(e —10q) /2 (g — €?) = — 0.013, 1 — 1, 62 — 1geh + g (35 — 15/58 %) = 1.001837
Yye? —VYeb + g (— Yy - /3 €8) = 0.001627, (/s €& — 1/, g) €2 = 0.000005
3,62 — 3/ ,eb + g (— 3, + 15/3 €?) = 0.004879, (/g € — By g) €@ = 0 000007

(33/32 2 — 25/y, q) € = 0.000013

To within“0.02 cm/sec® , Formulas (2.12) can be replaced by the simpler
ones

g ol @\ .
Fu="g(1—¢) (T) sin 2¢ (2.13)

a

F,=-—¢ (7)2 [1 —-ezi + 'g_q +q—2e2 (—1-}‘-35in’q>)(%>2:|

Yogo(q —e2)=—1.58, Ya(g— €2)="0.0016, 1—1/se? + 3/pg =1.0019

3. We introduce the geographic coordinates of the point (0 : the lati-
tude o', longitude ) , and the distance h from the point 0 to the
Clairaut ellipsoid along the normal to the latter. It is easy to obtain the
relations

) = a2 — Nsint o
P=a2 4kt +2h VI— s g — —— 2;',1:'(;,‘*’ (3.1)
[1 ae? ,
tan@P=|1— 1
¢ T atr(d—esine)s |7

relating the coordinates 7 ¢ to h , o . Relations (3.1) make it pos-
8ible to express the projections Fu.' F; in terms of » and ¢’'. Let us
obtaln these expressions, limiting ourselves to the case where the ratio
r/a 18 of the same order of smallness as e°.

From (3.1) we have
a \2 2h 3h2 3h .., . i 1
(—r-) =1——" + & T g esin® @'+ e?sin? ¢ A et (xsmg P — 5 sin? 2(p') (3.2)
sin @ =sin @’ (1 — ¢? cos? ¢')
We substitute (3.2) into (2.12). Multiplying out the series {we note

that ¢ and e® are of the same order of magnitude) and retaining only the
terms of the order e* , we obtain

-__ 8e 2 civt e kgt e(ef4-2g) |,
Fyl: ) (q—e)st(p [1—4 a q__e2 2(q_ez)_s]n2¢ (3-3)
e, 3 ., t ., 3 . ,
le=——g8[1———2—smztp +q(1+—2—sm2q1 )-{-e‘(—— ~8—sm2cp —3—251n22q>) +
17 1 h
+ e2q (— 58 sin? @+ —E“Sinz 2(p') -+ —a—e2 (3sin2 @’ — 1) —
hq ., . 2h | 3R
=+ osint @)~ + |

Next, we introduce the assoclated trihedron Oxaya%a of the geographic
coordinate grid. 1Its axis 2z, 18 directed along the positive normal of the
Clairaut ellipsoid; the axis y, points nothwards and lies in the plane of
the geographic meridian. The relative position of the trihedra Ox,y,2,
and Oxays2z 18 characterized by the angle (op’'— o), so that

Fo=F, cos(¢'—@)— £, 5in(¢'— @), Fp=F,sin(@" —q)+ F,cos(9 —g) (3.4)
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From the second formula of (3.1), we have to within e* that
sin (¢’ —¢) = e*sing’ cosq’ (1 + €?sin?¢’ — L/ a) (3.5)
cos (¢’ —¢) =1 —1,cetsin’¢ cos? g’

Substituting (3.3) and (3.5) into (3.%), we arrive at the following

expressions for FW F“

F, =g,sin29’ [% (1 -{-——(;sin?q)') + ':— (—e;- ~2q>]

I, = 1 -—ei in2 o ( _3‘_ in? @’ 'l L 1 . .
1= 8|1 — 5 sin’Q +q(1+ ) sm-cp)+e (——8—sm-q> +§7sm22¢) +
17 . , 3 . h
-} e%g (" ﬁsmztp — E‘Slng 2@’) +T e2(3sin? @’ — 1) —

h o Zh | 3R
— ¢ (1 4 6sin® @) — —- + a"]

By setting h = O _ in these expressions, we obtain the formulas for the
projections F, °, ,,° of the intensity of the Rarth's regularized gravita-
tional field at its surface (on the surface of the equipotential Clairaut
ellipsoid). If we now add to F,° F_° the projections on the axes x;ya¥s
of the centrifugal acceleration due to the Rarth's rotation, we see that the
first sum vanishes, while the second leads to the familiar formula for the

normal gravitational force in the Helmert-Cassinis form [1 and 5].
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